Third-party-funded project
Title:
"Raman Spectroscopy on Nano Structures" within the "Sonderforschungsbereich 410: Growth Mechanism, Low Dimensional Structures and Interfaces"
Project management at the University of Würzburg:
Participating scientists:
- Dr. Thomas Bischof
- Dr. Günther Lermann
- Dr. Bianca Schreder
- Dipl. Phys. Cristina Dem
- Dipl. Phys. Krisztina Babosci
- Prof. Dr. A. Forchel
, Physikalisches Institut, Universität Würzburg
- Prof. Dr. G. Landwehr
, Physikalisches Institut, Universität Würzburg
- Prof. Dr. E. Umbach
, Physikalisches Institut, Universität Würzburg
- Prof. Dr. W. Faschinger
, Physikalisches Institut, Universität Würzburg
- Prof. Dr. J. Geurts
, Physikalisches Institut, Universität Würzburg
- Prof. Dr. G. Müller
, Fraunhofer Institut für Silicatforschung
- PD Dr. G. Bacher
, Physikalisches Institut, Universität Würzburg
- PD Dr. L. Spanhel
, Lehrstuhl für Silicatchemie, Universität Würzburg
- Prof. Dr. M. Montagna
, Universität Trient, Italien
- Dr. M. Ivanda
, Ruder Boskovic Institut, Zagreb, Kroatien
Abstract:
Within this "Sonderforschungsbereich" we are performing linear Raman spectroscopical and femtosecond time-resolved measurements on quantum dots embeded in glass matrices and thin films, quantum dots and quantum wires located on surfaces as well as on quantum islands in collaboration with other projects located in the Physics Department. The optical properties of such low dimensional systems are of great interest in semiconductor physics. Quantum wires or dots are quasi one- or zero-dimensional systems in which free carriers and lattice vibrations (phonons) show special quantization effects. The energy of the phonons and their dependence on the size of the microstructures in a nanometer range can be determined by linear Raman spectroscopy. The femtosecond time-resolved investigations yield information about dynamical processes taking place after optical excitation.
Key words:
Raman spectroscopy
Femtosecond time resolved spectroscopy
Low dimensional systems
Projekt period:
from 01.1999 to 12.2002
Funding institution:
DFG ( Sonderforschungsbereich 410, dritte Förderperiode )
Preceding project:
SFB 410, zweite Förderperiode
Publications:
- [1] T. Bischof, G. Lermann, A. Materny and W. Kiefer.
(1999). Spectral Line Shape Analysis of Four-Wave Mixing Spectra and its Application to Quasi-Zero-Dimensional II-VI Semiconductor Crystallites. (monograph)
- [2] T. Kümmel, G. Bacher, A. Forchel, G. Lermann, B. Schreder, W. Kiefer.
(1999). Bandgap Engineering in CdZnSe/ZnSe quantum wires - interplay between strain release and lateral quantization. (monograph)
- [3] B. Schreder, T. Bischof, G. Lermann, P. Waltner, A. Materny, W. Kiefer, G. Bacher, A. Forchel, G. Landwehr, L. Spanhel.
(2000). Linear and Nonlinear Raman Spectroscopy on II-VI Semiconductor Quantum Wires and Dots. (monograph)
- [4] B. Schreder, T. Schmidt, V. Ptatschek, U. Winkler, E. Umbach, M. Lerch, G. Müller, W. Kiefer and L. Spanhel.
(2000). CdTe/CdS-?Core/Shell?-Clusters in Colloids and Films:The Path of Evolution and Thermal Break Up. (monograph)
- [5] W. Kiefer, B. Schreder, T. Bischof, G. Lermann, P. Waltner, A. Materny, G. Bacher, A. Forchel, G. Landwehr and L. Spanhel.
(2000). Studies on II-VI Semiconductor Quantum Wires and Quantum Dots by Linear and Nonlinear Raman Spectroscopy. (monograph)
- [6] P. Waltner, A. Materny and W. Kiefer.
(2000). Coherent phonon relaxation in CdSSe semiconductor quantum dots studied by femtosecond time-resolved resonant four-wave-mixing spectroscopy. (monograph)
- [7] B. Schreder, A. Materny, W. Kiefer, T. Kümmell, G. Bacher, A. Forchel and G. Landwehr.
(2000). Length Dependence of the LO-Phonon Properties in CdZnSe/ZnSe-Quantum Wires. (monograph)
- [8] B. Schreder, T. Schmidt, V. Ptatschek, L. Spanhel, A. Materny and W. Kiefer.
(2000). Raman Characterization of CdTe/CdS-?Core-shell?-Clusters in Colloids and Films. (monograph)
- [9] B. Schreder, T. Kümmel, G. Bacher, A. Forchel, G. Landwehr, A. Materny and W. Kiefer.
(2000). Raman Investigation of CdxZn1-xSe/ZnSe Quantum Wires: Length Dependence of the Strain Relaxation. (monograph)
- [10] B. Schreder, T. Kümmel, G. Bacher, G. Landwehr, A. Materny and W. Kiefer.
(2000). Resonance Raman Spectroscopy and Excitation Profile of CdxZn1-xSe/ZnSe Quantum Wires. (monograph)
- [11] P. Waltner, A. Materny and W. Kiefer.
(2000). Phonon Relaxation in CdSSe Semiconductor Quantum Dots Studied by Femtosecond Time-Resolved Resonant Four-Wave Mixing Spectroscopy. (monograph)
- [12] B. Schreder, A. Materny, W. Kiefer, T. Kümmell, G. Bacher, A. Forchel and G. Landwehr.
(2000). Raman investigation of CdxZn1-x/ZnSe quantum wires: Strain relaxation and excitation profile. (monograph)
- [13] P. Waltner, A. Materny, and W. Kiefer.
(2000). Phonon relaxation in CdSSe semiconductor quantum dots studied by femtosecond time-resolved coherent anti-Stokes Raman scattering. (monograph)
- [14] B. Schreder, A. Materny, W. Kiefer, and L. Spanhel.
(2000). Raman characterization of CdTe/CdS-?Core-Shell? ? clusters in thin films. (monograph)
- [15] B. Schreder, A. Materny, W. Kiefer, G. Bacher, A. Forchel, and G. Landwehr.
(2000). Excitation profiles of CdxZn1-xSe/ZnSe quantum wires. (monograph)
- [16] V. Wagner, J. Wagner, W. Faschinger, G. Bacher, J. Geurts, B. Schreder, W. Kiefer.
(2000). UHV chamber for laterally resolved Raman spectroscopy. (monograph)
- [17] P. Waltner, A. Materny and W. Kiefer.
(2000). Phonon Relaxation in CdSSe Semiconductor Quantum Dots Studied by Femtosecond Time- Resolved Coherent Anti-Stokes Raman Scattering. (monograph)
- [18] B. Schreder, A. Materny, W. Kiefer, G. Bacher, A. Forchel and G. Landwehr.
(2000). Resonance Raman Spectroscopy on Strain Relaxed CdZnSe/ZnSe-Quantum Wires. (monograph)
- [19] B. Schreder and W. Kiefer.
(2001). Raman spectroscopy on II-VI semiconductor nanostructures. (monograph)
- [20] K. Babocsi, M. Ivanda, C. Dem, M. Schmitt, M. Montagna, and W. Kiefer.
(2002). Low wavenumber Raman scattering from nanosized CdSxSe1-x crystals embedded in glass matrix. (monograph)
- [21] C. Dem, M. Ivanda, K. Babocsi, M. Schmitt, and W. Kiefer.
(2002). Determination of nanosized particle distribution by means of low wavenumber Raman scattering. (monograph)